Q1: The natural voltage response of the circuit in Fig.Q1 is

$$v(t) = 75e^{-8000t}(\cos 6000t - 4\sin 6000t)V, \quad t \ge 0,$$

When the inductor is 400mH.Find (a)C; (b)R; (c) V_0 ; (d) I_0 ; and(e) $I_{L(t)}$.

Q2: The two switches in the circuit seen in Fig.Q2 operate synchronously. When switch1 is in position a, switch 2 is in position d. When switch 1 moves to position b, switch 2 moves to position c. Switch 1 has been in position a for a long time. At t=0,the switches move to their alternate positions. Find $v_{0(t)}$ for t>0.

Q3: The resistor in the circuit of Fig.Q2 is decreased from 200 Ω to 125 Ω . Find $v_{0(t)}$ for t>0.

Q4: The switch in the circuit in Fig. Q4 has been Open a long time before closing at t=0 find $i_{l(t)}$ for t≥0.

Q5: The switch in the circuit shown in Fig.Q5 has been closed for a long time. The switch opens at t=0. Find $v_0(t)$ for t>0.

Q6: The switch in the circuit in Fig.Q6 has been in position a for a long time. At t=0, the switch moves instantaneously to position b.

a) What is the initial value of v_a ?

b) What is the initial value of dv_a/dt ?

c) What is the numerical expression for $v_a(t)$ for t>0?

Q7: The switch in the circuit of Fig.Q7 has been in position a for a long time. At t=0 the switch moves instantaneously to position b .Find a) v_0 (0⁺)

b) $dv_0(0^+)/dt$ c) $v_0(t)$ for $t \ge 0$.

Q8: a) Derive the differential equation that relates The output voltage to the input voltage for the circuit shown in Fig.Q8.

b) Compare the result with Eq.8.75 when $R_1C_1=R_2C_2=RC$ in Fig.8.18.

c) What is the advantage of the circuit shown in Fig.Q8?

Q9: The voltage signal of Fig.Q9 (a) is applied to cascaded integrating amplifiers shown in Fig.Q9(b). There is no energy stored in the capacitors at the instant the signal is applied.

- a) Derive the numerical expressions for $v_0(t)$ and $v_{o1}(t)$ for the time intervals 0 < t < 0.5 s and 0.5 s < $t < t_{sat}$.
- b) Compute the value of t_{sat}.

